A model specification test for the variance function in nonparametric regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

www.econstor.eu A simple test for the parametric form of the variance function in nonparametric regression

In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak smoothness assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to a Gaussian process can be established. In the special case of testing for homoscedasticity the limit...

متن کامل

A new test for the parametric form of the variance function in nonparametric regression

In the common nonparametric regression model the problem of testing for the parametric form of the conditional variance is considered. A stochastic process based on the difference between the empirical processes obtained from the standardized nonparametric residuals under the null hypothesis (of a specific parametric form of the variance function) and the alternative is introduced and its weak ...

متن کامل

A simple test for the parametric form of the variance function in nonparametric regression

In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak smoothness assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to a Gaussian process can be established. In the special case of testing for homoscedasticity the limit...

متن کامل

Variance Function Estimation in Multivariate Nonparametric Regression

Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AStA Advances in Statistical Analysis

سال: 2018

ISSN: 1863-8171,1863-818X

DOI: 10.1007/s10182-018-00336-y